Integrated Fieldwork 2019

Abschlussbericht

Danksagung

Es war eine große Ehre für alle GuG- und GEOengine Studenten an dem Integrierten Praktikum teilzunehmen. Vielen Dank an alle Betreuer und Studenten die sich engagiert haben um dies wahr werden zu lassen.

Wir haben aus den Aufgaben und den Fehlern in diesen Tagen sehr viel gelernt. Ohne die Geduld und die Fürsorge der Betreuer wäre dies nicht möglich gewesen.

Die letzte Anerkennung gilt unserem Sponsor der alle unsere Anforderungen erfüllt und die Voraussetzungen dafür schafft, was das Integrierte Praktikum zu einem unvergesslichen Erlebnis macht.

Inhaltsverzeichnis

WP2 - Three-Dimensional Reference Frame via GNSS Observations
WP3 - Levelling
WP4 – Creation of a 3D network by total station19
WP5 – Profile measurements by gravimetry
WP6 – Kinematic Road survey
WP7 – Multispectral optical remote sensing
WP8 – Complementary 3D Object Reconstruction using Close-range Photogrammetry
and Terrestrial Laser Scanning
WP9 – 3D Object reconstruction using UAS-photogrammetry
WP10 – Digital Terrain Model creation91

Integrated Fieldwork 2019

WP2: Three-dimensional Reference Frame via GNSS Observations

Supervisors

K. Douch

R. Schlesinger

Team Member

Lanlin Zeng

Contents

1.	Einführung	.6
2.	Durchführung der Messung	.7
3.	Probleme bei der Messung und Lösungsvorschläge	.7
4.	Datenauswertung	. 8
5.	Ergebnisse und Beurteilen	.9

1. Einführung

Die Hauptaufgaben des Arbeitspakets 2 sind zum einen ein Fundamentalnetzwerk im Messbereich aufzustellen und zum anderen die Koordinaten der Festpunkte und der Neupunkte auf dem Flugplatz zu bestimmen. Die Koordinaten dieser Punkte werden zuerst im auf dem WGS84 basierenden Koordinatensystem gemessen und bestimmt und später in das UTM-System transformiert. Die UTM-Koordinaten werden im Anschluss den Arbeitspaketen 1, 4 und 6 zur Verfügung gestellt.

Das Arbeitspaket 2 kann genauer in folgenden Punkten aufgegliedert werden:

- Auswählen von Festpunkten und Definition von Neupunkten
- Konzipieren des Netzwerkes
- Erstellen des Session Plans
- Durchführung der GNSS-Messungen
- Datenprozessierung und Netzwerkauswertung mit Leica Geo Office

Die folgenden 6 Festpunkte (siehe Abb. 1) werden im Messbereich ausgewählt fürs Fundamentalnetzwerk.

Abbildung 1. Skizze der Punkte

Folgende Einschränkungen werden beim Erstellen vom Session Plan berücksichtigt:

• 8 GNSS Empfänger sind verfügbar

- Jeder Punkt soll mindestens mit drei Sessions von statischer GNSS-Messung aufgenommen werden.
- Jede Session dauert eine Stunde.
- Zwischen Sessions sollte eine Stunde für Hinfahrt zum nächsten Punkt und Aufbauen des Instrumentes geplant werden.
- Mindestens vier Satelliten sollen dem GNSS-Empfänger während der Messung immer sichtbar sein.

Da 8 GNSS-Empfänger von IIGS zur Verfügung gestellt werden, können maximal 8 Punkte in einer Session gemessen werden. Nach dem Zeitplan von WP1(Arbeitspaket 1) können 14 Sessions geplant werden. So wird mit 72 Session-Messungen gerechnet, das bedeutet, jeder Punkt kann neunmal gemessen werden.

2. Durchführung der Messung

Der erste Schritt bei der Feldmessung ist die Fest – bzw. Neupunkte zu finden und markieren. Das Markieren von Punkten wird durch Einstecken eines Fluchtstabes in deren Nähe realisiert, so dass diese später von den Messgruppen leicht wiedergefunden werden können.

Bei der Messung hat jede GNSS-messende Gruppe für jede Session einen Punkt zugewiesen. Die Gruppe muss vor dem Start der Session zum Punkt ankommen, und das Instrument aufstellen. Da in der Regel mehrere Gruppen gleichzeitig eine Mess-Session durchführen müssen, soll die Messung zum gleichen Zeitpunkt gestartet und gestoppt werden. Wenn dies nicht möglich sein sollte wegen unterschiedlicher Reisezeit zwischen Sessions oder Zeit des Instrumentenaufbaus, sollen alle Gruppen miteinander kommunizieren und messen gemeinsam eine Stunde vom Zeitpunkt, ab welchem die letzte Gruppe gestartet hat. Danach sollte die Instrumentenhöhe mit entweder Höhenmessbügel oder Meterstab gemessen werden. Die benutzte Messmethode für Instrumentenhöhe und alle ungewöhnlichen Angelegenheiten während der Messung sollen im Feldbuch dokumentiert werden. Alle Feldbücher werden am Ende des Tages gesammelt für die Auswertung.

3. Probleme bei der Messung und Lösungsvorschläge

Die meisten GNSS-Session-Messungen wurden erfolgreich durchgeführt und können für die

Netzwerk-Auswertung benutzt werden. Allerdings sind auch folgende Probleme dabei aufgetreten:

- Falsches Ausfüllen des Feldbuches, so dass bestimmte Informationen bei der Auswertung fehlen, z. B. die Instrumentenhöhe und/oder die Messmethode dafür sind falsch dokumentiert. -> Feldbuch richtig ausfüllen.
- Session Plan wurde verloren -> Den Plan sorgfältig aufbewahren
- Data Logger (SD-Card) wurde nicht richtig eingesteckt -> Data Logger vor der Messung kontrollieren.

4. Datenauswertung

Die Rohdaten der GNSS-Messungen sind im ersten Schritt in das Programmsystem Leica-GeoOffice einzulesen. Dabei soll die Vollständigkeit und Richtigkeit der Punktnummern, Antennenhöhen und Methoden der Höhemessungen anhand der Feldbücher überprüft werden.

Die anschließende Netzauswertung (sieh Abbild. 2) wird automatisch durchgeführt. Die Basislinien werden optimiert durch Überprüfen, Korrektion oder Löschen.

Anschließend, nachdem die Eingangsdaten eventuell korrigiert wurden, ist das Netz erneut auszugleichen, wobei einige Punkte mit den Koordinaten angeboten von LGL als Festpunkte eingeführt werden, um bessere Genauigkeit zu bekommen.

Die Auswertung bietet 3D Koordinate in Genauigkeit von Millimeterbereich im globalen Koordinatensystem an. Außerdem sollen die Koordinaten in UTM transformieren werden, weil die in Deutschland häufig verwendet werden. Die Normal Höhe werden mittels einer lokalen deutschen quasi-Geoid Korrektion berechnet. Darüber hinaus können Höhe Kontrolle mit Hilfe von den Höhen aus WP drei.

Abbildung 2. Das ausgeglichene Netz

5. Ergebnisse und Beurteilen

Das Netz beinhaltet acht Punkte, davon vier als Kontroll-Punkte verwendet werden. Die übrigen Punkte waren ausgewertet und ihre ellipsoidischen Höhe berechnet (sieh Tab.1). Aus den Tabelle 1 und 2 ergibt es sich, dass die Genauigkeiten von horizontalen Koordinaten und Höhe unter 5 mm sind. Aber bei der Genauigkeit kombinierter Positionen und Höhen sind ein paar Punkte über 5mm. Die werden mit Fehlerellipse innerhalb 1 cm bestimmt, wie in Abbildung 3 gezeigt. Wie in den Ergebnissen (sieh Abbild. 4) gezeigt hat, dass die Standardabweichungen von meisten Punkten unter 5 bis 7 mm sind. Die größte Abweichung in beiden Tabellen ist bei NP1. Der mögliche Grund dafür ist, dass Auto vorbeigefahren ist, weil der Punkt nahe der Straße steht.

Zusammenfassen kann man sagen, dass die Qualität von horizontalen Koordinaten und Höhen in beiden UTM Koordinatensystem und WGS84 Koordinatensystem gut und gleich sind.

Table 1.	UTM	Coordinates	(m)
			()

PoinPointEastingsNorthingt IdClass	Ellipsoida l Height	Positio n +Heigh	Positio n Quality	Height Qualit y
------------------------------------	------------------------	------------------------	-------------------------	-----------------------

					t Quality		
150	Adjuste d	32526628.806 4	5378546.289 1	443.2972	0.0053	0.0026	0.0046
076	Adjuste d	32526328.623 5	5373744.392 2	421.3457	0.0059	0.0028	0.0052
NP1	Adjuste d	32529520.413 3	5375124.556 1	720.1840	0.0084	0.0044	0.0071
NP2	Adjuste d	32529311.463 8	5375146.304 5	715.2540	0.0061	0.0030	0.0053
105	Control	32529618.050 0	5375720.540 0	-	0.0031	-	-
152	Control	32531980.380 0	5378673.400 0	-	0.0000	0.0000	0.0000
019	Control	32529974.810 0	5375217.650 0	-	0.0001	0.0000	0.0001
053	Control	32531086.880 0	5371948.030 0	-	0.0036	-	-

Table 2. Coordinates in WGS84 (m)

Point Id	Point Class	X	Y	Z	Position +Height Quality	Position Quality	Height Quality
150	Adjusted	4173255.4960	687951.9771	4758607.6137	0.0053	0.0026	0.0046
076	Adjusted	4176844.8182	688216.3161	4755411.2142	0.0059	0.0028	0.0052
NP1	Adjusted	4175509.6199	691239.2599	4756539.1968	0.0084	0.0044	0.0071

NP2	Adjusted	4175523.6281	691029.7976	4756550.6340	0.0061	0.0030	0.0053
105	Control	4174582.2501	691187.9004	4756394.0504	0.0063	0.0031	0.0054
152	Control	4172486.7319	693252.3178	4758878.8935	0.0000	0.0000	0.0000
019	Adjusted	4175373.5080	691678.0274	4756605.3950	0.0001	0.0000	0.0001
053	Control	4177140.3212	693080.7596	4753888.9763	0.0071	0.0036	0.0061

Abbildung 3. Error Ellipse for point NP1, NP2 and 105.

Adjustmer	nt Results				
Coordinates					
Station	12 12 12 12	Coordinate	Corr	Sd	22.2
105	Latitude	48° 32' 02.00994" N 9° 24' 04.34220" E	0.0000 m 0.0000 m	-	fixed
file:///C:/\	Jsers/gis/AppDa	ta/Local/Temp/~Rpt/	l.html		22.07.2019
					Page 2 of 21
	Height	720.8177 m	-0.0087 m	0.0054 m	
150	Latitude	48° 33' 34.00739" N	0.0170 m	0.0021 m	
	Longitude	9° 21' 39.22364" E	0.0016 m	0.0016 m	
	Height	443.2973 m	-0.0030 m	0.0046 m	
152	Latitude	48° 33' 37.22336" N	0.0000 m	_	fixed
	Longitude	9° 26' 00.35579" E	0.0000 m	-	fixed
	Height	717.4630 m	0.0000 m	-	fixed
19	Latitude	48° 31' 45.66233" N	0.0000 m		fixed
	Longitude	9° 24' 21.60915" E	0.0000 m	2	fixed
	Height	728.3300 m	0.0000 m	-	fixed
53	Latitude	48° 29' 59.57736" N	0.0000 m	-	fixed
	Longitude	9° 25' 14.95638" E	0.0000 m	-	fixed
	Height	506.1467 m	0.0037 m	0.0060 m	
76	Latitude	48° 30' 58.53784" N	0.0249 m	0.0023 m	
	Longitude	9° 21' 23.48547" E	0.0033 m	0.0017 m	
	Height	421.3457 m	-0.0055 m	0.0052 m	
NP1	Latitude	48° 31' 42.72493" N	0.0299 m	0.0036 m	
	Longitude	9° 23' 59.42903" E	0.0038 m	0.0026 m	
	Height	720.1840 m	-0.0041 m	0.0071 m	
NP2	Latitude	48° 31' 43.46453" N	0.0283 m	0.0024 m	
	Longitude	9° 23' 49.24632" E	0.0033 m	0.0018 m	
	Height	715.2540 m	-0.0046 m	0.0053 m	

Abbildung 4. Adjustment Results Showing Standard Deviation

Integriertes Praktikum 2019

WP3: Nivellement

Betreuer

Martin Metzner

Teammitglieder

Christian Mayr

Yifei Zheng

Yu Huang

Inhaltsverzeichnis

1. Einführung	
2. Methodik	
3. Result	
4. Challenges and recommendations	

1. Einführung

Die grundlegende Aufgabe des Nivellements beim Integrierten Praktikum ist es, die Höhen neu gewählter Punkte mit den Höhen bekannter Höhenpunkte zu verbinden. Diese Verbindung wird durch das messen der Höhenunterschiede von Neupunkten und bekannten Punkten erreicht. In unserem Fall bestehen die Neupunkte aus 4 GNSS beobachteten Punkten, 2 Passpunkten für photogrammetrische Auswertungen und 2 zusätzlich neu gesetzten Höhenpunkten.

2. Methodik

Beim Integrierten Praktikum wurden 4 vordefinierte plus eine zusätzliche line nivelliert. Jede Linie wurde in einer Schleife gemessen, d.h.: Vom Anfangspunkt zum Endpunkt und wieder zurück. Auf diese Weise wurde jede Linie mindestens zweimal gemessen um ein robustes Ergebnis zu erhalten. Ein bekannter Höhenpunkt ist in jeder Linie enthalten

Um Fehler zu berhindern wurden die Messungen in einem alternierendem BFFB Muster durchgeführt. Die Höhenunterschiede werden hierbei durch den Mittelwert der zwei vollständigen Beobachtungen ermittelt. Durch die redundanten Messungen erhält man ein robusteres Ergebnis.

Die in den Instrumenten (sowohl Leica DNA03 als auch Trimble DiNi) integrierten Programme ermöglichen es ihnen die Höhenunterschiede bereits intern zu berechnen.

Die dafür verwendete Formel lautet:

$$\Delta h_{AB} = \Delta h_1 + \Delta h_2 + \Delta h_3 + \dots + \Delta h_n = \sum_{i=1}^n \Delta h_i$$

 Δn_n ist der Höhenunterschied zweier benachbarter Zwischenpunkte. n ist die Anzahl der Instrumentenstandpunkte.

Die Standardabweichung eines nivellierten Höhenunterschieds $\Delta\Delta H$ entlang einer Linie L ist berechnet sich durch folgende Formel:

$$\sigma_L = \sigma_{\varepsilon} \sqrt{n} \sqrt{1 + nq^2}$$

mit $q = \frac{\sigma_{\Lambda}^2}{\sigma_{\varepsilon}^2}$

 $\sigma_{\scriptscriptstyle \Delta}^2$ Varianz der systematischen Fehler

 $\sigma_{\scriptscriptstyle arepsilon}^2$Varianz der zufälligen Fehler

n.....Anzahl der Instrumentenstandpunkte

Abbildung 1: Messlinien

3. Result

Die 4 vordefinerten Linien wurden mindestens zweifach gemessen (Vor- und Rückweg gilt hier als einfache Messung). Linie 3 ist hier ein Sonderfall, da die Messungen einer Gruppe , aufgrund von falscher handhabe des Instruments, unbrauchbar sind. Die zusätzlich definierte Linie 5 wurde

Alles in allem, sind alle Messungen gut verlaufen und haben zu zueinander passenden Ergebnissen mit geringen Fehlern geführt.

Point ID	Height[m]
284	421.28625

NP1	720.14650
NP2	715.23223
019	728.33025
553	717.46255
277	443.35714
H1	717.98824
H2	720.00345

Tabelle 1: Höhe der Punkte

Line	Standard Deviation[m]
1	0.00160
2	0.00132
3	0.00118
4	0.00157
5	0.00144

Tabelle 2: Messgenauigkeit

4. Challenges and recommendations

Zu aller erst ist zu sagen, dass durch von unseren Kollegen zurückgemeldet wurde, dass sie Probleme beim bedienen des Leica DNA03 hatten. Das relativ komplizierte Menü macht es schwierig die richtigen einstellung zu finden. Dadurch hat auch ein Team die Falsche Einstellung verwendet, was Ihre Daten unbrauchbar gemacht hat. Ein dazu eventuell beitragender Faktor ist unsere nicht ausreichend ausführliche Instrumentenanleitung. Eine Empfehlung für die nächste nivellementverantwortliche Gruppe wäre es, mehr Zeit in eine detaillerte Instrumentenanleitung zu investieren.

Ein weiteres auftretendes Problem ist, das nicht korrekte benennen von speziellen Punkten. Dies führt zu einer komplizierten Auswertung und zu eventuellen Verwechslungen von Punkten. In unserem Fall sind es nicht all zu viele Beobachtungen und die meisten Teams haben sich aufgeschriben, falls sie einen Punkt nicht korrekt benannt haben. Für eine reibungslosere sollte man dennoch die Wichtigkeit der korrekt benannten Punkte noch stärker betonen.

Das letzte Problem bestand darin, dass mehrere Gruppen gleichzeitig auf einem Punkt messen wollte, was für manche Gruppen zu großen Verzögerungen geführt hat. Hier sollte bereits während der Planung der Session-Plans mehr zwischen den Gruppen kommuniziert werden um solche "Doppelbelegungen" zu verhindern.

Integrated Fieldwork 2019

WP4: Creation of a 3D Network by Total Station

Supervisor

Gabriel Kerekes

Team Member

Ariane Miseke

Rudolf Frolow

Inhaltsverzeichnis

1.	Ei	inleitung	21			
2.	Ne	etzwerkplanung	21			
	2.1.	Punktkennzeichnung	21			
	2.2.	Vermessungsplan	21			
	a.	Erste Woche	21			
	b.	Zweite Woche	21			
3. Datenaufbereitung und -verarbeitung						
4. Fazit						

1. Einleitung

Arbeitspaket 4 beschäftigt sich mit der Erstellung eines (stark redundanten) 3-dimensionalen Netzwerkes zur Verdichtung des Punktenetzes auf dem Flugplatz in Hülben. Dieses Netz wird dabei auf die bereits vorhandenen GNSS-Punkte NP1, NP2 und 105 gestützt. Dieses Netz dient als Basis für weitere Messungen auf dem Flugplatz. Realisiert wurde dieses Netz mit Hilfe eines motorisierten Tachymeters der Firma Leica (TS30).

2. Netzwerkplanung

a. Punktkennzeichnung

Das Netzwerk wurde am ersten Tag von Team E und Team F aufgebaut. Insgesamt umfasste das Netzwerk 15 Punkte. Darunter waren die GNSS-Punkte NP1, NP2 und 105 bereits vom letzten Jahr markiert. Einige Punkte wurden mit den Holzpflöcken markiert, da sie sich auf Rasenflächen befanden, andere Punkte wurden mit Nägeln markiert.

b. Vermessungsplan

a. Erste Woche

Alle Messungen, die mit der Netzwerkbildung zusammenhängen, wurden in der ersten Woche durchgeführt und von allen Teams gemessen. Um genauere Ergebnisse zu erzielen und eine bessere Fehlerverteilung im gesamten Netzwerk zu gewährleisten, mussten die Teams das Instrument an verschiedenen Stationen einrichten, um unterschiedliche Perspektiven für jeden Punkt zu haben.

b. Zweite Woche

Am ersten Tag der zweiten Woche wurden die an der Wand des Hangars aufgehängten Ziele des Terrestrischen Laserscanners (TLS) reflektorlos vermessen, um die lokalen Koordinaten jedes Punktes zu ermitteln, der später in UTM-Koordinaten umgewandelt und an das Arbeitspaket 8 (WP8) übergeben wurde.

Am nächsten Tag der gleichen Woche, wurden nach einer freien Stationierung die Bodenkontrollpunkte (GCPs), die über beide Landebahnen verteilt sind, wie in der folgenden Abbildung gezeigt, gemessen. Daraus wurden lokale Koordinaten von jedem Punkt gewonnen und erneut in das UTM-Koordinatensystem transformiert, das von Arbeitspaket 9 (WP9) verwendet werden soll.

Der Punkt P12 wurde von Arbeitspaket 9 (WP9) in der Bündelausgleichung nicht verwendet, da er versehentlich kurz vor dem Drohnenflug entfernt wurde.

Abbildung 1: Verteilung der Bodenkontrollpunkte (GCP)

3. Datenaufbereitung und -verarbeitung

Nach den erfolgten Messungen werden die Daten mit Hilfe von Leica Geo Office aus der Speicherkarte ausgelesen und in eine .txt Datei exportiert. Bereits in Leica Geo Office können bei der Messung eventuell aufgetretene Fehler bereits korrigiert werden. Nach dem Export werden die Daten weiterführend im Texteditor Notepad++ bearbeitet. Hier gilt es für die Ausgleichung weniger relevante Informationen zu entfernen. So werden beispielsweise der Zeitstempel sowie die bereits durch polares Anhängen berechneten Koordinaten entfernt, da für die Ausgleichung in JAG3D nur die Beobachtungen benötigt werden.

Sobald alle Datensätze aufbereitet sind wird jeder Datensatz im ersten Schritt einzeln in JAG3D betrachtet um Ausreißer leichter aufzuspüren. In JAG3D können einzelne Beobachtungen deaktiviert werden, sollten diese schlechten Einfluss auf die Ergebnisse haben. Darüber hinaus

können zu erwartende (a-priori) Standardabweichungen für die Beobachtungsgrößen Richtungen, Zenitwinkel und Schrägstrecken festgelegt werden. Nach Bearbeitung des Datensatzes in JAG3D und erfolgter Ausgleichung werden die Punkte samt Beobachtungen graphisch dargestellt. Im Folgenden aufgeführt ist eine Netzmessung eines Datensatzes:

Abbildung 2: Lokales Netz eines einzelnen Datensatzes

Nachdem alle Datensätze einzeln betrachtet wurden und eventuell aufgetretene Ausreißer detektiert wurden, können die Datensätze in einem JAG3D Projekt zusammengefügt werden. Für das gesamte Netz werden nun Näherungskoordinaten im lokalen System bestimmt, danach folgt die Ausgleichung. Hier werden iterativ Beobachtungen deaktiviert, sodass am Ende ein redundantes Netz entsteht. Dargestellt ist hier das gesamte Netzwerk in einem lokalen Koordinatensystem:

Abbildung 3: Gesamtes lokales Netzwerk

Sobald dies erreicht ist, können die Koordinaten der GNSS Punkte von Arbeitspaket 2 (WP2) herangezogen werden um das gesamte Netz aus dem lokalen Koordinatensystem in das globale UTM Koordinatensystem zu überführen. Hierbei werden die Koordinaten der Punkte NP1 sowie NP2 verwendet. Das Ergebnis sieht folgendermaßen aus:

Abbildung 4: Netzwerk im UTM Koordinatensystem

Dieses Netzwerk dient nun als Referenz für alle weiteren Arbeitspakete und kann für weitere Messungen verwendet werden. Im Folgenden dargestellt sind die Ergebnisse aus der Ausgleichung des gesamten Netzes in UTM Koordinaten:

Pkt.	Ostwert [m]	Nordwert [m]	Höhe [m]	$\sigma_{0st} [{ m mm}]$	σ_{Nord} [mm]	$\sigma_{H\"ohe} \ [mm]$
M1	32529445.373	5375108.745	718.823	0.26	0.33	0.80
M2	32529185.080	5375210.119	709.446	0.46	1.10	1.15
M3	32529178.418	5375121.732	710.753	0.33	1.14	1.32
M4	32529001.235	5375185.781	710.134	0.43	1.94	2.16
M5	32529311.799	5375265.971	712.870	0.65	0.65	1.03
M6	32529488.539	5375244.824	720.850	0.52	0.30	0.80
M7	32529481.576	5375175.967	720.691	0.34	0.28	0.72
M8	32529696.217	5375191.971	725.615	0.44	0.59	1.12
M9	32529587.255	5375233.085	723.777	0.49	0.47	0.88
M10	32529534.754	5375579.633	725.158	0.62	0.65	1.15
M11	32529561.764	5375485.965	725.277	0.68	0.60	1.19
M12	32529624.018	5375326.103	724.921	0.68	0.47	1.04
NP1	32529520.432	5375124.456	720.181	0.19	0.29	0.71
NP2	32529311.380	5375146.215	715.265	0.22	0.59	0.79
105	32529618.079	5375720.737	720.850	0.29	0.51	1.29

4. Fazit

Um ein genaueres Netzwerk zu erhalten, wurden nicht alle durchgeführten Messungen in die Ausgleichung einbezogen, da ungleich verteilte Fehler das gesamte Netzwerk beeinflussen.

- Einige Messungen sind am ersten Tag verloren gegangen, weil sie nicht gespeichert wurden.
- Einige Messungen vom ersten Tag wurden wegen falsch platzierter Reflektoren gelöscht.
- Einige Messungen hatten eine größere Standardabweichung und wurden bei der Ausgleichung nicht berücksichtigt.

Trotz dieser Fehler waren die erzielten Ergebnisse zufriedenstellend und ein 3D-Netzwerk wurde erstellt und ausgeglichen.

Integrated Fieldwork 2019

WP5: Profile Measurements by Gravimetry

Supervisor

Ron Schlesinger

Team Member

Thomas Daud Gisiri

Kailun Huang

Nicholas Matthew Schneider

Inhaltsverzeichnis

1.	Einleitung	29
2.	Ablauf der Vermessung	29
3.	Datenverarbeitung	31
4.	Ergebnis	33

1. Einleitung

Die Topographie und Mächtigkeit des Untergrunds eines Flugplatzes ist von großer Bedeutung für dessen Sicherheit und Nutzbarkeit. Mittels relativen Gravitationsmessungen können Massenvariationen detektiert und berücksichtigt werden. Die Aufgabe dieses Projekts besteht darin eine Karte mit Bouguer Anomalien zu entwerfen.

2. Ablauf der Vermessung

Abb.1: Vermessungsraster

Neben dem Hauptgebäude des Hangars befindet sich ein Festpunkt, bei welchem vor und nach jeder Session eine Referenzmessung durchgeführt wird. Mit bekannten absoluten Werten aus Bad Urach kann relativ dazu die Gravitation bestimmt werden. Anschließend werden auf der ersten Linie 15 Punkte gemessen und auf dem Rückweg (Linie 2) jeder dritte. Diese relativen Werte beziehen sich auf den Referenzpunkt am Hangar. Die unten stehenden Plots zeigen zum Einen die aufgenommenen Punkte und zum Anderen ein Digitales Geländemodell des Rasters.

Abb.2: Punkteverteilung mittels MATLAB

Abb.3: Digitales Geländemodell mittels MATLAB

3. Datenverarbeitung

3.1 Gravitation

Für die Vermessung der Gravitation ist das folgende Modell anzuwenden.

$$y_n(t_k) = g_n + b + dt_k + \epsilon.$$

Hierbei berücksichtigt die Gleichung zusätzlich zur Gravitation g_n auch einen unbekannten Offset b, einen linearen Drift d und das so genannte Messrauschen ε . Daraufhin soll die Gravitationsdifferenz zu dem Referenzpunkt berechnet werden. Dies geschieht mit folgender Formel:

$$\Delta y_n(t_k) = y_n(t_k) - y_1(t_1) + \epsilon = \Delta g_n + d(t_k - t_1) + \epsilon$$

Zuletzt muss noch eine Ausgleichung nach Gauß-Markov durchgeführt werden und die Genauigkeiten der Gravitationsunterschiede und der Driftunterschiede mittels Fehlerfortpflanzung berechnet werden.

3.2 Simpel Bouguer Anomalien

Bei der Bouguer Anomalie wird der gemessene Schwerewert korrigiert. Die unten stehende Formel beachtet die nötigen Korrekturen:

$$\Delta g_{sb} = g_{obs} - g_{fa} - g_{sb} - g_0$$

g_{obs} : gemessene absolute Schwerkraft
 g₀ : Theoretische Schwerkraft,
 g_{fa} : Freiluftkorrektur,
 g_{sb} : Simple Bouger Korrektur.

3.3 Worauf zu achten ist

Als Vorbereitung für die Datenverarbeitung und graphischen Darstellungen eignet sich eine Excel Tabelle zu erstellen, die der Reihenfolge des Gravimeterprotokolls entspricht. Dabei ist es wichtig auf folgende Strukturen zu achten:

- Anzahl der Linien bei Rückweg ändern
- Instrumentenhöhe aus den Feldbüchern entnehmen
- Luftdruck bei jedem Punkt ändern (meist bei innerhalb einer Session gleich)
- Freiluftanomalie immer auf -0.308 $\frac{mGal}{m}$ setzen
- Lagen und Höhen aus der RTK Datei einlesen

Die Struktur der Tabelle ist unten dargestellt. Liegt diese so vor, so können die Anomalien den Punkten zugeordnet werden und als Plot dargestellt werden.

PtID	Line	Point Type	Instrumen t Height [m]	pressure [mbar]	absGrav [mGal]	FAgrad [mGal/m]	DHHN [m]	stdDHHN [m]	X [m]	Y [m]	lattitude [degree]
Woche 1											
1000)		0.374								
101	1		0.483	936		-0.308	768.7455		32529485.96	5375205.971	
102	2 1		0.486	936		-0.308	768.2731		32529476	5375206.531	
103	1		0.472	936		-0.308	767.8766		32529466.03	5375207.055	
104	1		0.488	936		-0.308	767.5758		32529456.07	5375207.569	
105	5 1		0.473	936		-0.308	767.2857		32529446.1	5375208.114	
106	5 1		0.476	936		-0.308	766.9521		32529436.12	5375208.578	
107	1		0.482	936		-0.308	766.6535		32529426.15	5375209.099	
108	1		0.486	936		-0.308	766.2861		32529416.18	5375209.542	
109	1		0.481	936		-0.308	765.9259		32529406.2	5375209.972	
110	1		0.479	936		-0.308	765.4852		32529396.23	5375210.266	
111	1		0.486	936		-0.308	765.186		32529386.25	5375210.714	
112	2 1		0.476	936		-0.308	764.7026		32529376.28	5375211.155	
113	1		0.477	936		-0.308	764.2474		32529366.31	5375211.409	
114	1		0.481	936		-0.308	763.8976		32529356.33	5375211.785	
115	5 1		0.483	936		-0.308	763.6715		32529346.35	5375212.149	
113	3 2		0.474	936		-0.308	764.2474		32529366.31	5375211.409	
110	2		0.48	936		-0.308	765.4852		32529396.23	5375210.266	
107	2		0.484	936		-0.308	766.6535		32529426.15	5375209.099	
104	2		0.479	936		-0.308	767.5758		32529456.07	5375207.569	
101	2		0.485	936		-0.308	768.7455		32529485.96	5375205.971	
1000)		0.376								

Tabelle.: 1 Excel Tabelle aller Punkte

4. Ergebnis

4.1 Darstellungen und Interpretation

Aus den Anomaliekarten der beiden Wochen lässt sich eine gemeinsame Karte zur besseren Übersicht erstellen.

Abb.4: Karte der Simplen Bouguer Anomalien beider Wochen

In dieser Karte der Simplen Bouguer Anomalien ist zumal durch die erkennbare Abnahme der Anomalie ebenfalls eine Höhenabnahme im Gelände zu schließen, da Höhe und Schwere korrelieren. Allerdings sind Unregelmäßigkeiten zu erkennen. Beispielsweise befinden sich kleine Massendefizite an den Messpunkten 503 und 103. Basierend auf den Erfahrungen, die die Studenten im Feld gemacht haben, wurde festgestellt, dass diese "Löcher" aufgrund von Ameisenbauten erscheinen.

Zudem sind (wie oben erwähnt) größere Defizite nahe der Punkte 606 und 607 sichtbar. Es ist durchaus bekannt, dass der Hülbener Flugverein ein paar Löcher und Senkungen auf dem Flugfeld mit Schotter auffüllte, was ein Indiz für die drastische Anomalieänderung sein könnte. Allerdings sind dies nur Spekulationen, eventuell handelt es sich hierbei auch um kleinere Hohlräume unter der Erde.

4.2 Genauigkeiten

Zum Großteil spielen sich die Genauigkeiten des Gravimeters im erwünschten Rahmen ab, denn 10 bis 20 μ Gal konnten im Feld an den meisten Punkten erreicht werden. Selten prägen unsaubere Messungen mit Genauigkeiten bis zu 40 μ Gal das Protokoll, was eventuell an den Windbedingungen auf dem Flugplatz liegt. Zudem ist dies auch auf die Empfindlichkeit des Gravimeters zurückzuführen, da diese bei dem vorliegenden Wertebereich der Messungen überschritten wird. Der Wertebereich hat ein Mächtigkeit von ~250 μ Gal.

Zudem spielt in der Gravimetrie die Höhe auch eine signifikante Rolle. Mittels RTK Messungen gelang es den Studenten eine Genauigkeit von bis zu 2 cm zu erzielen. Dies ist ein akzeptabler Wert, wenn die bedacht wird, dass die RTK Messung in der Höhe nicht dieselben Genauigkeiten erreichen kann, wie in der Lage.

Integrated Fieldwork 2019

WP6: Kinematic Road Survey Abschlussbericht

Betreuer

Doris Becker

Tomke Lambertus

Team Mitglieder

Johannes Ernst

Meijie Xiang

Yi Wang

Inhaltsverzeichnis

1. Einführung	. 37
1.1 Beschreibung des Messgebiets	. 37
1.2 Aufgaben und Auswertung	. 37
2. Beschreibung des Messystems	. 38
2.1 Systemteile	. 38
2.2 Lever Arms	. 39
3. Arbeitsablauf	. 39
3.1 Messungen vor Ort	. 39
3.2 Nachbearbeitung der Messdaten	.41
4. Ergebnisse und Analyse	. 42
4.1 Allgemeine Messergebnisse	. 42
4.2 Vergleich der echt-zeit und nachbearbeiteten Ergebnisse	. 45
4.3 Vergleich der Ergebnisse zum DGM von WP10	. 46
4.4 Genauigkeitsanalyse	. 48
4.5 Geschwindigkeitsanalyse	. 50
1. Einführung

Kinematische Messungen von Straßen ist eine immer häufiger auftretende Methode der Datenerfassung. Zur Erfassung wird ein mit speziellen Messinstrumenten (Applanix System) ausgestattetes Fahrzeug benutzt. In diesem Projekt wurden, neben den umliegenden Straßen, auch Feldwege und die Startbahnen des Flugplatzes bei Hülben erfasst. Die resultierenden digitalen Bahnlinien können benutzt werden um ein Netzwerk, mit Bezug zu globalen Koordinaten (UTM), zu erstellen. Die Ergebnisse können anschließend visualisiert und mit den Daten aus anderen WPs (Orthophoto, DGM) verglichen werden.

1.1 Beschreibung des Messgebiets

Abbildung 1.1 Flugplatz bei Hülben

Der Flugplatz bei Hülben ist umgeben von Straßen und Pfaden mit unterschiedlichen Eigenschaften (Geteert und ungeteert sowie bereits aufgenommen oder nicht kartiert). Die aufgenommenen Wege sowie das Flugfeld werden am Ende der Datenverarbeitung graphisch dargestellt.

1.2 Aufgaben und Auswertung

Folgende Aufgaben werden in dieser Auswertung bearbeitet:

- 1) 3D-Netz der abgefahrenen Straßen in WGS84-UTM Koordinaten
- 2) 3D-Darstellung des Flugfeldes in WGS84-UTM Koordinaten
- 3) Vergleich des Netzes mit einem Referenz-DGM Modell (von WP10)

2. Beschreibung des Messystems

2.1 Systemteile

Das Applanix System besteht primär aus vier Teilen (vgl. Abbildung 2.1.1): POS Computer System (PCS), GNSS Antennen (zwei) mit GNSS Azimut Messungssystem (GAMS), Inertial-Mess-Einheit (IMU) und Distanzmesser (DMI).

Abbildung 2.1.1 Applanix System

Die nächste Abbildung zeigt die Position der Messinstrumente des Applanix Systems am Fahrzeug (vgl. Abbildung 2.1.2).

Abbildung 2.1.2 Ausgestattetes Fahrzeug

2.2 Lever Arms

Die sogenannten "Lever Arms" beschreiben die relative Position der Messinstrumente (bzw. der verschieden Koordinatensysteme) um die erfassten Daten in einem System zu kombinieren. Wie in Abbildung 2.2 sichtbar, sind alle Systemteile mit einem gemeinsamen Referenzsystem verbunden. Dieses System wird schlussendlich in ein globales Referenzsystem (z.B. ETRS89-UTM) transformiert.

Applanix LV420 System lever arms

Abbildung 2.2 Lever Arms

3. Arbeitsablauf

3.1 Messungen vor Ort

In diesem Abschnitt, eingeteilt in die drei Hauptteile der Mission, wird der allgemeine Arbeitsablauf beschrieben. Aufgabe der ersten Messgruppe war es, die Komponenten des Messsystems am Fahrzeug zu installieren. Dafür wurden alle Teile in die dafür vorhandenen Verankerungen gesetzt und mit Kabeln mit dem PCS verbunden. Das PCS hat die Aufgabe den gesamten Input zusammenzuführen und zu verarbeiten. Um eine akkurate Verarbeitung zu gewährleisten, müssen einige Parameter gemessen werden. Zunächst wurde die Höhe der Antenne am vorderen Ende des Fahrzeugs mithilfe eines Maßbandes gemessen (2,54 m). Zusätzlich muss der Umfang des linken hinteren Reifens bestimmt werden. Dafür wird mit einer Kreide sowohl das Rad am unteren Ende als auch der Boden markiert. Danach wird der Reifen genau eine Umdrehung weit gefahren und der Boden erneut markiert. Die Entfernung der beiden Markierungen am Boden entspricht nun dem Umfang des Reifen (U) und kann direkt mit einem Maßband gemessen werden (vgl. Abbildung 3.1).

Mit diesen Messergebnissen lässt sich der Maßstab für das DMI mit folgender Formel bestimmen:

$$SF = \frac{4n}{U}$$
 mit $n = 1024$

Mit einem gemessenen Reifenumfang von 2,01 m erhält man somit:

$$SF = 2038$$

Außerdem wurden die "lever arms" der Antennen sowie das vordere und hintere Ende des Fahrzeugs und das IMU mit einem Tachymeter von zwei Standpunkten angemessen. Die Ergebnisse wurden in das lokale Flugzeugsystem und in UTM-Koordinaten transformiert. Da die Diskrepanzen zwischen beiden Instrumentenstandpunkten zu hoch waren, wurden die Ergebnisse nicht weiter beachtet. Stattdessen werden die vom Applanix System vorgegebenen Daten für die "lever arms" verwendet (vgl. Tabelle 3.1).

Lever Arm	Ref to IMU	Ref to GNSS	Ref to DMI
Х	-1.912m	0	-2.240m
Y	-1.190m	0	-1.780m
Z	1.092m	0	2.582m

Tabelle 3.1 Lever arms

Zuletzt wurden außerdem die Parameter des GAMS Systems festgelegt:

Two Antenna Separation	2.608m
Heading Calibration	0.5°
Heading Correction	0
Baseline Vector-X Component	-2.608m
Baseline Vector-Y Component	0.030m
Baseline Vector-Z Component	-0.032m

Tabelle 3.2 GAMS Parameter

Im Anschluss an die Vorbereitungen wurde jeweils ein zugeteiltes Segment des Vermessungsgebiets von einer Messgruppe, jeweils in beide Richtungen, gemessen (vgl. Abbildung 3.2). Dabei sollte die Genauigkeit der unterschiedlichen Messsysteme am Fahrzeug mithilfe der Software überwacht werden.

Abbildung 3.2 Arbeitsplan

3.2 Nachbearbeitung der Messdaten

Die Nacharbeitung der Messdaten lässt sich in drei Schritte einteilen. Zunächst werden alle vorhandenen Daten in die Verarbeitungssoftware POSPac MMS geladen und in WGS84 bzw. UTM 32N Koordinaten transformiert. Danach werden die 3-Dimensionalen Netzwerke aller Teams in QGIS und ARCGIS analysiert. Zuletzt werden die Ergebnisse mit dem digitalen Geländemodell von WP10 mithilfe von MATLAB verglichen.

Die POSPac MMS Bearbeitung lässt sich in drei Schritte unterteilen:

1) Vorbereitung der Messdaten

Die Netzwerke wurden vom System bereits während der Fahrt in echt-zeit verarbeitet. Direkt nach der Fahrt konnten die Ergebnisse somit mit dem "POSPac autonomous" Modus ohne virtuelle Referenzstation für die Verbesserung der GNSS Messungen überprüft und abgespeichert werden.

2) Aufstellung der Referenzstation

Für das Projekt wurde der Neupunkt NP2 als Standort für die virtuelle Referenzstation (VRS) verwendet. Mithilfe des SAPOS Dienstes lässt sich die Positionsgenauigkeit durch Differenzierung deutlich verbessern.

3) Verwendung eines Kalman Filters

Der Kalman Filter (forward/backward/smooth) wird bereits während der GNSS Verarbeitung angewendet. Während der Messfahrt wird das Netzwerk lediglich durch die GNSS Messung in echt-zeit berechnet. Erst durch die Nachbearbeitung werden alle Systemkomponenten (IMU/DMI/GAMS) integriert und eine gemeinsame Positionslösung erstellt. Die Ergebnisse sind somit nach der Nachbearbeitung wesentlich genauer als die echt-zeit Lösungen.

4. Ergebnisse und Analyse

4.1 Allgemeine Messergebnisse

In Abbildung 4.1.1 sind die Netzwerke der aufgenommenen Routen der fünf Teams (B-F)

dargestellt. Sie lassen sich unterteilen in Aufnahmen des Flugfeldes (Team E und F) und Aufnahmen der Straßen und Pfade (Team B, C und D).

Team F Abbildung 4.1.1 Echt-zeit Netzwerke der fünf Teams (POSPac MMS)

Die verarbeiteten 2D Netzwerke und Höhen der Teams sind in Abbildung 4.1.2 aufgeführt. Sie beinhalten die drei Hauptwege um das Flugfeld sowie dasselbe.

Abbildung 4.1.2(1) 2D Überblick über die verarbeiteten Netzwerke (QGIS)

Abbildung 4.1.2(2) Höhenübersicht der verarbeiteten Netzwerke (QGIS)

Bei genauerer Betrachtung der gefahrenen Straßen kann man sehen, dass, bei der Rundfahrt in beide Richtungen, jeweils auf einer Straßenseite gefahren wurde (Abbildung 4.1.3). Abbildung 4.1.4 zeigt ein durch Interpolation erstelltes digitales Geländemodell:

Abbildung 4.1.3 Vergrößerte Aufnahme eines Netzwerks

Abbildung 4.1.4 3D Modell des Flugfeldes (MATLAB) 4.2 Vergleich der echt-zeit und nachbearbeiteten Ergebnisse

Abbildung 4.2.1 zeigt die Zeit-Höhen Diagramme der Routen von Team D2 und E1. Der Kurvenverlauf der echt-zeit und nachbearbeiteten Höhen ist jeweils sehr ähnlich, allerdings ergibt sich für beide Routen jeweils ein Offset (durchschnittlich 2,048 m für D2 und 3,51 m für E1) mit unterschiedlicher Ausprägung über die Zeit. Dies kommt in erster Linie daher, dass beim "post-processing" Korrektionen durch die Referenzstation die Positionsgenauigkeit – und somit auch die Höhengenauigkeit – verbessern. Außerdem wird bei der echt-zeit Berechnung

lediglich die Code-Lösung der GNSS Positionierung verwendet (Meter Genauigkeit). Bei der Nachbearbeitung wird mithilfe der Referenzstation die Mehrdeutigkeit gelöst und somit eine (Zentimeter Weitere Phasenlösung berechnet Genauigkeit). Gründe sind die Parameterkorrektur, die Signalamplitude (Rauschunterdrückung) und die Integration aller Messysteme bei der Nachbearbeitung. Die "post-processed" Ergebnisse sind also wesentlich genauer. Bei Betrachtung der X-Y Koordinaten der echt-zeit und nachbearbeiteten Daten sind nur geringe Differenzen zu erkennen, was in erster Linie am kleinen Maßstab der Abbildung sowie der generell höheren horizontalen Genauigkeit von GNSS Messungen liegt (siehe Abbildung 4.2.2).

a) Route D2

b) Route El

Abbildung 4.2.1 Echt-zeit und nachbearbeitete Höhen

Abbildung 4.2.2 Echt-zeit und nachbearbeitete X-, Y-Koordinaten

4.3 Vergleich der Ergebnisse zum DGM von WP10

Um eine Auswertung des erzeugten Geländemodells vorzunehmen, wird das DGM von WP10 als Referenz verwendet. Abbildung 4.3.1 und 4.3.2 zeigen die beiden generierten Modelle. Beide weisen einen sehr ähnlichen Verlauf auf. An den Begrenzungsflächen beider Modelle

gibt es ungewöhnliche Abweichungen was an den mangelnden Daten für die Interpolation in diesen Bereichen liegt.

Abbildung 4.3.2 DGM von WP10

5.291

5.297

5.296

× 10⁵

5.295

5.294

5.293

5.292

Abbildung 4.3.3 zeigt die Höhenunterschiede im Vergleich zum Referenz-DGM (basierend auf einer Liste von ausgewählten Punkten); Abbildung 4.3.4 beschreibt die Unterschiede unter Verwendung einer 2D-Karte. Aus beiden Diagrammen ist ersichtlich, dass die Differenz der meisten Punkte unter 0,2 m liegt, was der erwarteten Genauigkeit des Systems (Dezimeter) entspricht.

5.29

710

705 5.37528

5 .37528 5.37528 5.37522 5.37522 5.37518 5.37516 5.37514

Abbildung 4.3.4 Höhenunterschiede zum Referenz-DGM in 2D (QGIS 2D)

4.4 Genauigkeitsanalyse

Die berechnete Genauigkeit der Ergebnisse ist in Tabelle 4.4.1 aufgeführt. Der Sprung von echtzeit Daten zu nachbearbeiteten Daten ist deutlich erkennbar (von Meter Genauigkeit zu Dezimetern). Die durchschnittliche Genauigkeit der echt-zeit Daten liegt bei 1,805 m, wohingegen die nachbearbeiteten Daten eine Genauigkeit von durchschnittlich 0,168 m erreichen.

		σ_{OST} [m]	σ_{NORD} [m]	$\sigma_{H\ddot{\mathrm{O}}HE}$ [m]
Toom D	Post-processed	0.012	0.013	0.055
Team D	Echt-zeit	1.348	1.511	2.149
Teerr C	Post-processed	0.012	0.012	0.049
Team C	Echt-zeit	1.415	1.431	3.048
Toom D	Post-processed	0.022	0.026	0.058
Team D	Echt-zeit	1.359	1.787	2.019
Toom F	Post-processed	0.012	0.013	0.055
Icalli E	Echt-zeit	1.348	1.511	2.149
Toom F	Post-processed	0.012	0.012	0.049
ream f	Echt-zeit	1.415	1.431	3.048

Tabelle 4.4.1 Standardabweichung der Netzwerke

Abbildung 4.4.2, 4.4.3 und 4.4.4 zeigen die Genauigkeit in Ost- und Nordrichtung und sind relativ ähnlich. Die meisten Punkte haben eine Genauigkeit von besser als 0,1 m. Jedoch ist der Verlust dieser Genauigkeit im oberen linken Eck der Route von Team D deutlich zu erkennen. Das liegt daran, dass das GNSS Signal in diesem Bereich durch die Bäume sehr stark abgeschwächt wurde.

Abbildung 4.4.2 Standardabweichung in Ost-West Richtung

Abbildung 4.4.3 Standardabweichung in Nord-Süd Richtung

Abbildung 4.4.4 Standardabweichung in der Höhe

4.5 Geschwindigkeitsanalyse

Abbildung 4.5.1 zeigt das Geschwindigkeitsdiagramm der Netzwerke. Die Farbe definiert außerdem die Richtung des Geschwindigkeitsvektors. Dies wird verdeutlicht im Lupenfenster der Abbildung dargestellt. Es ist zu erkennen, dass sich das Messfahrzeug einmal auf dem Hinweg und einmal auf dem Rückweg befindet.

Abbildung 4.5.1 Geschwindigkeitsanalyse

Integrated Fieldwork 2019

WP7: Multispectral optical remote sensing

Supervisor

Philipp Schneider (ifp)

Team Member

Hendrik Rechtsteiner

Ronja Miehling

Yi Wei

Yiming Chen

Contents

1.	Einleitung	54
	Aufgabe/Ziel des Work Packages	54
	Die Drohenflüge	54
	Das Post-processing	56
2.	Analyse der Fehler und	56
3.	Analyse der Ergebnisse	61
4.	Siemensstern und Absolute Auflösung	65

1. Einleitung

Aufgabe/Ziel des Work Packages

Das Work Package 7 bzw. die Measurement Groups welche für WP7 eingeteilt waren benutzten eine Drohne des IFP's, an welcher ein in Nadirsicht ausgerichteter multispektraler Sensor angebracht war. Während des Fluges nimmt der Sensor, Bilder im roten, grünen, Nahen Infraroten sowie Red-edge Spektralbereich auf. Desweiteren wird ein übliches RGB-Bild aufgenommen. Durch die verschiedenen Spektralbereiche ist es möglich den NDVI ("Normalized Difference Vegetation Index") zu berechnen und mittels einer Software beim Post-Processing zu visualisieren. Dieser NDVI wird dazu benutzt Aussagen über die Gesundheit der Vegetation zu machen

Die Drohenflüge

Während des IP's gab es zu Beginn Komplikationen mit der Energieversorgung des Sensors durch die Drohne "Phantom 4".

Um diesem Problem auzuweichen wurde die ebnfalls benutzbare Drohne "Phantom 2" benutzt. In den folgenden Bildern ist jedoch leicht zu erkennen, dass die Phantom 2, welche das ältere Modell ist, einen weitaus ungenaueren Flug durchführt. Die Drohne weißt teilweise eine große Abweichung zum vorgegebenen Flugplan vor.

Beim letzten Flug des Tages wurde versucht noch so viel Fläche wie möglich aufzunehmen. Dafür wurde die Flughöhe von 50 m auf 80 m erhöht. Dieser Plan wurde jedoch recht zügig durch den teilweise sehr starken Wind zunichtegemacht und kostete die Drohen viel Energie. Es war der Drohne nicht mehr möglich de vorgebebenen Flugplan zu folgen weshalb der restliche Akku der Drohe genutzt wurde um per Hand noch einen Teil des Gebietes aufzunehmen.

Figure 1.1: Flug 1 mit Phantom 4

Figure 1.2: Flug 2 mit Phantom 2

Figure 1.3: Flugt 3 mit Phantom 2

Figure 1.4: All 3 Flights

Das Post-processing

Das Post-Processing der multispektralen Bilder wurde mithilfe der Software "Pix4D" durchgeführt. Die Software wandte die radiometrische Kalibrierung auf alle Kanäle an und berechnete den bereits erwähnten NDVI

2. Analyse der Fehler und

Das Past-Processing lieferte folgende Ergebnisse

Figure 2.1: Orthomosaik und das dazugehörige DOM

Figure 1 visualisiert in grünen Punkten den Verlauf der Drohne und in roten Punkten den Ort von unkalibrierten bzw. falschen Aufnahmen

Figure 2.2 Drohenposition

Figure 2.3: Anzahl der überlppenden Bilder

Die obenstehende Grafik visualisiert die Häufigkeit der Überlappungen der einzelnen Bilder bzw die damit verbundene Genauigkeit der Ergebisse. Die Farbe grün zeugt von hoher Anzahl an Überlappungen bzw. hoher Genauigkeit

Min Error [m]	Max Error [m]	Geolocation Error X[%]	Geolocation Error Y [%]	Geolocation Error Z [%]
- 1	-3.08	0.00	0.02	1.61
-3.08	-2.46	0.00	0.02	0.66
-2.46	-1.85	1.80	0.78	6.22
-1.85	-1.23	5.44	4.56	9.37
-1.23	-0.62	14.50	15.14	14.81
-0.62	0.00	31.67	25.73	20.98
0.00	0.62	25.83	31.29	20.96
0.62	1.23	16.89	15.63	15.30
1.23	1.85	3.60	5.53	5.65
1.85	2.46	0.28	1.28	3.31
2.46	3.08	0.00	0.00	0.95
3.08	-	0.00	0.00	0.19
Mean [m]		-0.063247	0.045934	-0.170088
Sigma [m]		0.769844	0.786489	1.258043

Die hier zu sehende grafik visualisiert die Größe des Geolocation Errors. Jener Fehler ist ein

Indikator für die Differenz zwischen der Bildposition vor und nach dem Berechnen der Bildposition.

Relative Geolocation Error	Images X[%]	Images Y [%]	Images Z [%]
[-1.00, 1.00]	66.86	68.40	59.63
[-2.00, 2.00]	95.84	94.61	88.95
[-3.00, 3.00]	99.43	99.41	97.73
Mean of Geolocation Accuracy [m]	0.790712	0.790712	0.969451
Sigma of Geolocation Accuracy [m]	0.193772	0.193772	0.221096

Was bei der eingefügten Tabelle zu erkennen ist, ist dass der Fehler in X- und Y- Richtung meist zwischen 2 und -2 liegt. Dies zeugt von hoher Genauigkeit. In Z-Richtung gibt es allerdings eine Häufung an Fehlern.

Figure 2.4 Fehlerellipse (Ansicht von oben)

Figure 2.5 Fehlerllipse (Horizontale Ansicht)

Diese Fehler kamen zustande, an Stellen, an welchen die Drohne eine Richtungsänderung vollführte. Dies ist ebenfalls an den Fehlerellipsen an den Wendepunkten erkennbar. Des Weiteren entstehen die Fehler durch den bereits erwähnten Einfluss des Windes sowie bei den Start- und Landesequenzen.

Während des Post-Processings wird ebenfalls eine Reihe von Punkten, von welchen die Koordinaten durch andere WP's bereitgestellt wurden, mit in die Berechnungen eingefügt um den Einfluss der Konfigurationen zu erkennen.

Die folgende Tabelle veranschaulicht die Genauigkeitsunterschiede, zwischen dem Processing in welchem alle 4 Flüge gleichzeitig bearbeitet wurden und das Processing in welchem jeder Flug einzeln bearbeitet wurde.

Fehler zur initialen Position	X Richtung	Y Richtung	Z Richtung
Getrenntes processing	1.038	1.329	-2.457
Gemeinsames processing	1.083	1.364	-2.241

Tabelle 2.3 Vergleich des separaten Processings and gemeinsamen Processings(GCP27)

Figure 2.6 Vergleich der beiden Konfigurationen (Links: Getrennt, Rechts: Gemeinsam)

Die Unterschiede sind nicht auffallend groß, was darauf schließen lässt, dass die Fluganordnung auf dem Gelände einen nicht allzu großen Einfluss hatte.

3. Analyse der Ergebnisse

Im Folgenden wird der bereits erwähnte NDVI berechnet.

Die Formel hierfür ist:

$$NDVI = \frac{(NIR - ROT)}{(NIR + ROT)}$$

Die Berechnung führt zu folgenden Ergebnissen:

Figure 3.1 NDVI result

Die Genauigkeit des NDVI kann ebenfalls über den Vergleich mit dem True Color Bildes des WP 9 analysiert werden

Figure 3.2 Gesunde vs. ungesunde Vegetation

Anahnd dieser Bilder ist sehr stark zu erkennen, wie sich der NDVI zwischen bereits abgestorbenen oder geernteten Pflanzen und gesunden lebenden Pflanzen unterscheidet. Besonders anhand der Farben des NDVI's als auch den Farben der True Color Bilder des WP 9 ist der Unterschied zwischen bspw. Dem Waldgebiet gegenüber dem geernteten Feld zu erkennen.

Figure 3.3 Gesunde vs. ungesunde Vegetation

Die Feinheit des NDVI's wird in den folgenden Bildern klar, da dieser frisches und gesundes Gras in einer großen Wiese erkennt, welches aber in der Realität mit eigenem Auge kaum zu erkennen war.

Figure 3.4 Schattenbereiche

Desweiteren visualisiert der NDVi fälschlicherweise auch Schattenbereiche als Bereiche mit sehr gesunder Vegetation, da in diesen Bereichen sehr niedrige Rot und Red-Edge Wellenreflektion erkannt wird.

Figure 3.5 NIR Bild (oberes) and RED Bild (unten)

4. Siemensstern und Absolute Auflösung

Im Folgenden wird die Auflösung der benutzten Kamera mithilfe eines Siemenssterns berechnet.

Die dafür verwendete Formel:

$$l = \frac{\pi \cdot d}{2 \cdot n}$$

- *l*: Absolute Auflösung
- n: Streifenanzahl im Siemensstern (16)
- d: Durchmesser

Figure 4.1 NIR Bild and RED Bild

Figure 4.2 Siemensstern in 4 Kanälen (Grün, Rot, Red-edge and NIR)

Durch die Messung des Durchmessers der verschwommen Fläche kann die Auflösung berechnet werden. Die Ergebnisse sind:

$$l_{Grün} = 0.038m$$
, $l_{Rot} = 0.038m$, $l_{RED-EDGE} = 0.029m$, $l_{NIR} = 0.025m$.

Integrated Fieldwork 2019

WP8: Komplementäre 3D Objektrekonstruktion durch Nahbereichsphotogrammetrie und terrestrisches Laserscanning

Supervisor

Norbert Haala

Michael Kölle

Team Member

Ruwei Nie Yifei Yin

Tianqi Xiao Hui Zeng

Contents

1.	Ein	leitung	68
2.	Dat	enverarbeitung	68
2	2.1	Nahbereichsphotogrammetrie mit Metashape	68
2	2.2	Terrestrisches Laserscanning mit Cyclone	70
3.	Gra	phische Analyse mit CloudCompare	72
3	5.1	Vergleich zweier Sensoren	72
3	5.2	Analyse der LiDAR-Punktwolke	73
4.	Stat	tistische Analyse	75
4	.1	Punktdichte	75
4	.2	Lokales Rauschen	76
5.	Mo	dellierung	77
5	5.1	Mesh Ergebnis	77
5	5.2	Probleme und Herausforderungen	77

1. Einleitung

Dieses Arbeitspaket bietet zwei Möglichkeiten zur Erfassung der Geometrie von 3D-Objekten: Multi-View Stereo (MVS) und Light Detection and Ranging (LiDAR). Ziel dieses Arbeitspakets ist es, die beiden Techniken zur 3D-Objekt Rekonstruktion zu kombinieren und die Vor- und Nachteile eines Systems gegenüber dem anderen zu untersuchen.

- Modellobjekt: Flugzeug
- Instrumente: Laserscanner (Leica P20), UAV (DJI Phantom 4 and Phantom 4 RTK)
- Ablauf:
 - a) UAV-basierte Bilderfassung
 - b) Terrestrisches Laserscannen
 - c) Zusammenführung und Auswertung von 3D-Daten
- Software: Metashape, Cyclone, Cloudcompare

2. Datenverarbeitung

a. Nahbereichsphotogrammetrie mit Metashape

Bilder von 2 verschiedenen Drohnen werden als Datenquelle verwendet, um die 3D-Punktwolke des Flugzeugs zu rekonstruieren. Zur Georeferenzierung werden vier Bodenkontrollpunkte (Schwarz-Weiß Schachbrett) festgelegt und ihre globalen Koordinaten werden vom Tachymeter gemessen.

P1	529423.4167	5375156.9005	719.2075
P2	529421.6600	5375142.8619	719.1729
P3	529441.3752	5375141.1790	719.5659
P4	529443.7240	5375154.9451	719.6462

Abb. 2.1: UTM-Koordinaten von Bodenkontrollpunkte

Abb.2.2: Marker auf Schachbrett legen

Die Datenverarbeitung mit Metashape funktioniert folgendermaßen:

Zunächst werden die Bilder ausgerichtet und die Koordinaten der Drohnen werden von WGS 84 nach UTM konvertiert. Anschließend werden die Kontrollpunkte mit UTM-Koordinaten importiert und in jedem Bild manuell gemessen, indem Marker an der entsprechenden Position platziert werden.

Danach werden dichte Punktwolken mit hoher Qualität erzeugt.

Abb. 2.3: Dichte Punktwolke von Bildern aus Phantom 4 RTK (manuell gesteuert)

Abb. 2.4: Dichte Punktwolke von Bildern aus Phantom 4 (automatisch gesteuert) Phantom 4 RTK nimmt Bilder mit manueller Steuerung auf, während Phantom 4 über eine präzise Flugplanung verfügt und automatisch gesteuert werden kann. Wie in Abb. 2.3 und Abb. 2.4 dargestellt, weist die von Phantom 4 abgeleitete Punktwolke daher eine viel bessere Farbqualität sowie eine höhere Punktdichte als die von Phantom 4 RTK auf. Beiden Punktwolken fehlen jedoch Informationen über die Flugzeugreifen, weil alle Bilder von oben aufgenommen wurden und weniger identische Punkte im unteren Teil des Flugzeugs detektiert werden können.

b. Terrestrisches Laserscanning mit Cyclone

Insgesamt gab es 6 Scanstationen, 4 Kugelziele und 4 Bodenkontrollpunkte für das Laserscannen. Die Skizze der Messung sieht wie folgt aus:

Abb. 2.6: Skizze des Messfeldes

Die Datenverarbeitung mit Cyclone funktioniert folgendermaßen:

• **Rohdatenprüfung:** Die Benennung von Kontrollpunkten und Kugelzielen muss vor der Registrierung überprüft werden. In Station 2 wird Kugelziel 3 gelöscht, weil es falsch benannt und gescannt wurde. In Station 3 ist Kugelziel 2 nicht an der entsprechenden Position und wird daher gelöscht. In Station 4 wird die Position von Kugelziel 3, die falsch gescannt wurde, wieder auf die richtige Position eingestellt.

• **Registrierung:** Die Punktwolken aller Scanstationen wurden in einer ausgerichteten Punktwolke registriert. Eine UTM-Koordinatenliste wird ebenfalls in die Registrierung importiert, um eine georeferenzierte Punktwolke im UTM-Koordinatensystem zu erstellen.

c2	529423.4167	5375156.9005	719.2075
c3	529421.6600	5375142.8619	719.1729
c4	529441.3752	5375141.1790	719.5659
c1	529443.7240	5375154.9451	719.6462

Abb. 2.7: UTM-Koordinatenliste

Das registrierte Ergebnis ist in Abb. 2.8 dargestellt, wobei die Farbe die Intensität der Punktwolke darstellt. Die höchste Intensität wird rot angezeigt, während die niedrigste Intensität blau angezeigt wird.

Abb.2.8: registrierte Punktwolke des Flugzeugs

3. Graphische Analyse mit CloudCompare

a. Vergleich zweier Sensoren

In Abb. 3.1 ist ein Positionsunterschied von zwei Punktwolken zu beobachten. Dies kann durch die Ungenauigkeit der Georeferenzierung erklärt werden. Bei der photogrammetrischen Datenverarbeitung in Metashape werden alle Marker mit UTM-Koordinaten manuell in die einzelnen Bilder eingefügt. Dies kann ungenau sein und zu Fehlern bei der Georeferenzierung führen. Bei LiDAR-Daten waren die Koordinaten der verwendeten Kugelziele unbekannt. Dies bedeutet, dass es immer eine leichte Positionsabweichung zwischen den realen Kontrollpunkten
und den Kugelzielen geben kann.

In der gelben Punktwolke aus der Photogrammetrie sind die identische Punkte hauptsächlich aus der Umgebung anstelle des Flugzeugs aufgrund der glatten und reflektierenden Oberfläche. Außerdem war das Sonnenlicht während der Bildaufnahme sehr stark und daher fehlt der photogrammetrisch dichten Punktwolke die Information von der glatten Oberfläche (siehe Flugzeugflügel). Dies kann jedoch durch LiDAR-Punktwolke kompensiert werden, die in blau angezeigt werden. Als aktiver Sensor liefert er zahlreiche Informationen zur Objektoberfläche unabhängig von den Lichtverhältnissen.

Abb. 3.2 Vergleich Punktwolken in RGB Farbe (links: LiDAR, rechts: Photogrammetrie)

Die photogrammetrischen Daten liefern eine bessere Farbqualität und entsprechen der realen Welt genauer als die LiDAR-Daten. Der Grund könnte der Qualitätsunterschied der Kamera sein. Luftbildkameras haben eine höhere Qualität im Vergleich zu terrestrischen Kameras.

b. Analyse der LiDAR-Punktwolke

Die Analyse der LiDAR-Punktwolke wird anhand von Intensitätswerten und RGB-Farbe durchgeführt.

Fig. 3.3: LiDAR Punktwolke verbessert durch Intensitätswerte

Fig. 3.4: LiDAR Punktwolke verbessert durch RGB-Werte

Die Grafik 3.3 lässt sich zeigen, dass die Oberfläche von dem Flugzeug die höchsten Intensitäten haben aufgrund seiner glatten und reflektierenden Eigenschaft. Im Gegenteil, die Wiese hat die niedrigsten Intensitäten aufgrund seiner rauen Eigenschaft und deshalb reflektiert sie diffus. Weiterhin gibt es Informationslücken bei der Glasscheibe von der Flugkanzel, weil der Laser durch die Glasscheibe transmittiert hat. Zu guter Letzt, aufgrund der Inklination des Flugzeugskörpers kann eine niedrige Intensität bedeutende schwarze Streife auf dem Flugzeugskörper beobachtet werden.

4. Statistische Analyse

a. Punktdichte

Fig. 4.1: Stichprobe von 1m³ einer Punktwolke (links: LiDAR, rechts: Photogrammetrie)

Cloud	
Points	2,060,855
Global shift	(-529400.00;-5375100.00;0.00)
Global scale	1.000000
Point size	Default

Cloud	
Points	12,534
Global shift	(-529400.00;-5375100.00;0.00)
Global scale	1.000000
Point size	Default

Fig. 4.2: Punktzahl von beiden Stichproben (links: LiDAR, rechts: Photogrammetrie) Offensichtlich bietet die LiDAR-Daten viel höhere Punktdichte als die fotogrammetrischen Daten an. Die Auflösung und die Qualität der feingescannten Punktwolken aus LiDAR wurden zu höchsten eingestellt, wobei die fotogrammetrischen Daten nur 71 Fotos zu der Rekonstruktion der Punktwolke beigetragen haben.

b. Lokales Rauschen

Fig. 4.3: Ebeneanpassung einer Wiesenebene aus beiden Punktwolken (links: LiDAR, rechts: Photogrammetrie)

Property	State/Value	Property	State/Value		
Primitive		Primitive			
Type Normal Dip / Dip dir. Show normal vec Iransformation hi Matrix	Plane (-0.0200733 ; -0.00781164 ; 0.9997 (1 ; 248) deg. tor story	Type Plane Normal (-0.0198775 ; -0.00757902 ; 0.9 Dip / Dip dir. (1 ; 249) deg. Show normal vector			
0.868505 0.495 -0.495494 0.86 0.013566 0.016 0.000000 0.000	274 -0.020073 28.225231 8576 -0.007812 44.142052 5731 0.999768 719.088806 0000 0.000000 1.000000	0.989874 0.14 -0.140724 0.9 0.018614 0.01 0.000000 0.00	10552 -0.019878 28.467794 190020 -0.007579 44.118618 10300 0.999774 719.081787 100000 0.000000 1.000000		
Meta data <mark>RMS</mark>	0.00674314983189106	Meta data RMS	0.003918101545423269		

Fig.4.4: RMS der Ebeneanpassung (links: LiDAR, rechts: Photogrammetrie)

Die Standardabweichung der Ebeneanpassung aus fotogrammetrischen Daten (0.0039m) ist niedriger als die aus LiDAR-Daten (0.0067m). Deshalb ist das lokale Rauschen der Punktwolke aus Fotogrammetrie niedriger.

5. Modellierung

a. Mesh Ergebnis

Fig. 5.1: Flugzeug in Mesh

Das Flugzeug-Mesh zeigt sichtbare Verzerrungen aus der Grafik 5.1. Rauschen können auf den Flügeln und dem Leitwerk erkannt werden, weil das Objekt aus unterschiedlichen Punktwolken rekonstruiert wurde (6 Punktwolken aus dem Laserscanner und 1 fotogrammetrische Punktwolke), woraufhin die Fehler von der Registrierung und Kombination aller Punktwolken zu Rauschen geführt hat. Außerdem sind Rauschen unter den Flügeln und Leitwerk durch die Ebeneanpassung entstanden. Darüber hinaus fehlt Information bei der Glasscheibe von der Flugkanzel und dies verursacht die Informationslücken im Mesh.

b. Probleme und Herausforderungen

• Ebeneanpassung:

Da die Information von dem unteren Teil des Flugzeugs fehlt, müssen vier Punkte für jeden unteren Teil des Flugzeuges (die Flügel, der Körper und das Leitwerk) gewählt werden, um jeweils eine Ebene zu approximieren. Mithilfe dieser Ebenen können die Informationslücken beim Flugzeug eliminiert werden.

• Wahl der Parameter:

Eine der Hauptherausforderungen in die Modellierung ist die Wahl der Parameter für das Mesh. Ein Normalfeld muss zuerst vor der Poisson Rekonstruktion etabliert werden. Danach wurden die geeigneten Parameter als folgendes eingesetzt, um die Verzerrung des Meshes zu beseitigen:

Poisson Surface Re	construction	
Octree depth		10 🗣
Density Adva	nced	
samples per node	1.00	▲
full depth	1	.
point weight	50.00	\$
boundary	Dirichlet	-

Fig.5.2: Parameters für Poisson Oberflächenrekonstruktion

Um eine bessere Darstellung für das Mesh des Flugzeuges zu bekommen, der Darstellungsbereich der Intensität wurde als folgendes adaptiert:

Fig.5.3: Parameter für den Darstellungsbereich

Integriertes Praktikum 2019

WP9: 3D Objekt Rekonstruktion mittels UAS-Photogrammetrie

Betreuer

Dr.-Ing. Michael Cramer

Teammitglieder

Bingqing Xu

Hannes Nübel

Inhaltsverzeichnis

- 1. Einleitung 81
- 2. Datenerfassung 81
- 3. Passpunkte 82
- 4. Datenverarbeitung 83
- 5. Analyse der Daten 84
- 6. Vergleich mit anderen Datensätzen 88

1. Einleitung

Die Aufgabe bestand darin, ein digitales Oberflächenmodell und ein Orthophoto für das Gelände des Flugplatzes Hülben mit einer besseren Auflösung als die vom LGL verfügbaren Daten abzuleiten. Im Folgenden werden die Datenerfassung, die Genauigkeit der RTK-Messungen und Vergleiche mit den Daten des LGL und den anderen WPs diskutiert.

2. Datenerfassung

Abbildung 2.1 Kamerapositionen

	Flughöhe	GSD	Vorwärts- überdeckung	Seitwärts- überdeckung	Geschwindigkeit	Streifen- anzahl
Ost- West Flug	60 m	2 cm	70%	50%	7 m/s	9
Nord- Süd Flug	37 m	1 cm	75%	60%	3 m/s	10

Tabelle 2.2 Parameter der Flüge

Der Flugplan wurde im Feld mit dem dji-Flugplanungstool "dji Ground Station" erstellt, das von der Steuereinheit auf der Fernbedienung aus bedient werden kann. Der Flug sollte die Landebahnen und den Hangar des Flughafens Hülben abdecken. Um genaue Daten in der Mitte des Gebietes zu haben, wurden zwei Flüge geplant. Einer entlang der Landebahn in Ost-West-Richtung mit einer GSD von 2 cm und die andere senkrecht dazu nur in der Mitte der Region, aber mit einer GSD von 1 cm (Abbildung 2.1).

Der Plan, der vor dem Praktikum gemacht wurde, wurde weitgehend erfüllt. Die Frontüberlappung wurde jedoch niedriger gewählt, da sie die Geschwindigkeit und damit die

Flugzeit beeinflusst (Tabelle 2.2).

Außerdem sieht man in Abbildung 2.1, dass in der unteren linken Ecke des Ost-West-Fluges keine Bilder aufgenommen wurden. Der Flug musste wegen Batterieproblemen in zwei Teilen durchgeführt werden. Im zweiten Teil kam es dazu, dass dieser nicht an dem Punkt begann, an dem er beim ersten Mal gestoppt wurde, was ein häufiger Fehler für dji-Drohnen zu sein scheint.

3. Passpunkte

Obwohl unsere Drohne mit RTK ausgestattet ist, benötigen wir immer noch so viele Kontrollpunkte wie im letzten Jahr, weil wir die Genauigkeit dieser beiden Methoden vergleichen wollen. Gemäß dem Flugplan haben wir GCPs gleichmäßig entlang der Start- und Landebahnen gewählt, um das Gebiet abzudecken, sowie zusätzliche Punkte in der Mitte (Abbildung 3.1). Die Punkte P1 bis P4 wurden auch von WP8 für die Nahbereichsphotogrammetrie des Flugzeugs verwendet, welches auch in unseren Flügen zu sehen ist.

Abbildung 3.1 Verteilung der GCPs

Leider wurde P12 zerstört und konnte in den Bildern nicht mehr beobachtet werden.

Bei der Verarbeitung der Daten fällt auf, dass das schwarzen Tape besser zu identifizieren ist

als das graue, das letztes Jahr verwendet wurde. Problematisch sind aber teilweise die Checkboards. Dies ist in Abbildung 3.2 zu sehen und wir schätzen, dass es daran liegt, dass die Sonne sehr stark war, was zu einer hohen Reflexion auf der Tafel führt.

Abbildung 3.2 Checkerboard targets

4. Datenverarbeitung

Nachdem die Bilder im Feld aufgenommen wurden, können sie mit "Agisoft Photoscan" zu einem digitalen Oberflächenmodell (DSM) und einem Orthophoto verarbeitet werden.

Dazu werden die Bilder in die Software geladen und durch automatische Verknüpfungspunkte ausgerichtet. Danach können die gemessenen GCPs in den Bildern identifiziert werden, um eine Referenz für die Punktwolke zu erzeugen (zusätzlich zu den RTK-Positionen der Drohne).

Aus dieser Punktwolke können wir dann eine dichte Punktwolke, ein digitales Höhenmodell (Abbildung 4.1) und ein Orthophoto (Abbildung 4.2) ableiten.

Abbildung 4.1. DSM 2019

Abbildung 4.2. Orthophoto 2019

5. Analyse der Daten

Nach der Messung der Passpunkte (GCP) richten wir die Bilder neu aus. Um die Genauigkeit der RTK-Positionierung zu überprüfen, setzen wir unterschiedliche Gewichte für die Kamerapositionen und ändern die Anzahl der GCPs und Kontrollpunkte (CHP).

Die Konfiguration der 6 Versionen ist in Tabelle 5.1 zu sehen. Im Falle der Versionen a, b und c haben wir P1, P3, P13, P18, P22, P27 als Kontrollpunkte gewählt, da diese Punkte im uns interessierenden Gebiet weit verbreitet sind, ohne an der Grenze zu liegen, denn dort wollen

wir GCPs haben. Bei den Versionen d1 und d2 haben wir nur P6, P7, P17, P26, P23, P24 als GCPs ausgewählt und die anderen als Kontrollpunkte verwendet werden.

	GCP	СНР	RTK(m) (XY/Z)
Reference	All (26)	0	10
Version a	20	6	10
Version b	20	6	1
Version c	20	6	0.02/0.05
Version d_1	6	20	10
Version d 2	6	20	0.02/0.05

Tabelle 5.1 Parameter der Versionen

Für jede Version haben wir einen Report erstellt, aus dem wir die Kamerapositionsfehler, RMSE von GCPs und CHPs in den folgenden Tabellen entnehmen können.

Camera error	X error (cm)	Y error (cm)	Z error (cm)	XY error (cm)	Total error (cm)			
Reference	19.8209	15.3184	96.6939	25.0504	99.8861			
Version a	19.7543	15.4426	96.1711	25.074	99.3861			
Version b	17.5638	14.906	18.438	23.0364	29.5066			
Version c	2.91512	2.10693	4.38341	3.59682	5.67022			
Version d1	19.7982	12.4923	175.159	23.4099	176.717			
Version d2	2.09677	1.6536	3.71673	2.67036	4.57656			
Taballa 5.2 Mittleven Vanagaparitionafolden V. Easting V. Northing 7. Altitude								

Tabelle 5.2 Mittlerer Kamerapositionsfehler X - Easting, Y - Northing, Z - Altitude.

RMSE of GCP	X error (cm)	Y error (cm)	Z error (cm)	XY error (cm)	Total error (cm)
Reference	0.426932	0.449317	0.953632	0.619804	1.13735
Version a	0.397592	0.40021	1.03113	0.564134	1.17536
Version b	0.428928	0.400572	0.834753	0.586888	1.02042
Version c	4.96711	3.21921	2.18274	5.91908	6.30871
Version d1	0.341598	0.266726	0.945964	0.433395	1.04052
Version d2	7.16685	4.79192	1.24814	8.62127	8.71115

Tabelle 5.3. GCP RMSE.X - Easting, Y - Northing, Z - Altitude.

RMSE of CHP	X error (cm)	Y error (cm)	Z error (cm)	XY error (cm)	Total error (cm)
Reference	-	-	-	-	-
Version a	0.588101	0.623232	1.47963	0.856903	1.70985
Version b	0.593193	0.604464	1.51119	0.846909	1.73233
Version c	4.90394	3.41216	1.24208	5.97423	6.10199
Version d1	1.06232	0.831238	10.1811	1.34888	10.2701
Version d2	7.78592	4.98011	2.67121	9.2424	9.62067

Tabelle 5.4. Kontrollpunkte RMSE.X - Easting, Y - Northing, Z - Altitude.

In Abbildung 5.5 sieht man die Standardabweichungen der Kamerapositionen aus der Bündelblockausgleichung. Für den durchschnittlichen Kamerapositionsfehler erhalten wir unterschiedliche Ergebnisse von verschiedenen Versionen. Im Falle der Referenz verwenden wir alle Kontrollpunkte und stellen die RTK-Genauigkeit auf 10 m ein, was bedeutet, dass wir bei der Einstellung stärker auf GCPs vertrauen. Das führt zu größeren Fehlern an den Kamerastandorten. Zu erwähnen ist hier, dass wir in der Referenzversion einen systematischen Fehler gefunden haben, der von der Flugrichtung abhängig zu sein scheint (Abbildung 5.5). In Version a und d1 tritt dieser systematische Fehler ebenfalls auf.

Abbildung 5.5 Kamerapositionen und Fehlerellipsen

In Version c und d2 stellen wir die Genauigkeit von RTK auf 0,02 m in horizontaler Richtung und 0,05 m in Höhe ein. Dadurch werden die Fehler bei der Kamerapositionierung deutlich reduziert. Dies liegt daran, dass wir uns dafür entscheiden, mehr auf die GNSS-Daten zu vertrauen, was bedeutet, dass die Kamerapositionen fest sind. Das Interessante ist jedoch, dass der systematische Fehler, der bei der Referenz aufgetreten ist, sich auf die Bodenkontrollpunkte zu übertragen scheint, wie Abbildung 5.6 zeigt.

Abbildung 5.6 Systematische Fehler der GCPs in Version c

In Version tritt dieses Problem nicht auf. Die Fehler sind kleiner und die Richtungen der Fehlerellipsen sind viel zufälliger (Abbildung 5.7).

Abbildung 5.7 GCP Fehler in version a

Vergleicht man die Version a mit d1 und die Version c mit d2, so kann man feststellen, dass eine Verringerung der Anzahl der GCPs zu einer Erhöhung der Residuen für die Kontrollpunkte führt, so dass das Höhenmodell besser übereinstimmt, je mehr Punkte als GCPs herangezogen werden. Es muss aber auch berücksichtigt werden, dass es bei Verwendung von weniger Kontrollpunkten schwieriger ist, Fehler zu erkennen.

In Tabelle 5.3 und Tabelle 5.4 können wir sehen, dass wenn wir die Genauigkeit der RTK-Messungen von 10 m auf 1 m für die Version a und b ändern, es keinen großen Unterschied in Bezug auf die RMSE der Kontrollpunkte macht. Wenn wir die Genauigkeit von RTK weiter erhöhen, können wir feststellen, dass die Residuen von GCPs und CHPs erhöht werden. Denn wir verlassen uns mehr auf die GNSS-Beobachtung als auf die Kontrollpunkte. Aber was hierbei besonders interessant ist, ist dass die Residuen in Z-Richtung kleiner als in X,Y-Richtung sind, was bedeutet, dass RTK die Genauigkeit der Höhe verbessern kann. Diesen Punkt können wir auch beim Vergleich der Version d1 und d2 finden. Dies ist ein großer Vorteil für RTK-Drohnen, da weniger GCPs benötigt werden, besonders in der Mitte eines Bereichs. Normalerweise würde dies zu einem gekrümmten Modell führen.

6. Vergleich mit anderen Datensätzen

In Abbildung 6.1 ist der Unterschied zwischen unserem DSM und dem DTM aus dem LGL zu sehen. In den roten Bereichen weist das DSM eine Differenz von +50cm oder mehr gegenüber dem LGL-DTM auf. Das liegt daran, dass es mit einem Geländemodell statt einem Oberflächenmodell verglichen wird und es in dem Bereich viel Vegetation gibt.

Auf dem Flugplatz sind die Unterschiede homogen, es gibt also keine Verkippung. Aber die Unterschiede zum DSM sind meist positiv aufgrund der Vegetation.

Im unteren Wald gibt es einen größeren grünen Bereich, da dort keine Bilder aufgenommen wurden, so dass das DEM dort interpoliert werden musste und wir keine zuverlässigen Höheninformationen haben.

Abbildung 6.2. Höhenunterschiede WP9 vs WP10

Im Vergleich zu den aus WP10 (DTM mittels Tachymeter) abgeleiteten Höhen liegen die Unterschiede hauptsächlich im Bereich von wenigen Zentimetern. Darüber hinaus sehen wir wieder größere Unterschiede in Gebieten mit höherer Vegetation wie unten links (Abbildung 6.2). Ansonsten können wir beobachten, dass die Unterschiede für Punkte auf Wegen nahezu Null sind, da die Punkte aus WP10 zu denen passen, die in den Bildern zu sehen sind.

Abbildung 6.3. Höhenunterschiede WP9 vs WP6

Die von WP6 (kinematische Straßenvermessung) gemessenen Höhen weisen einen mittleren Versatz von +14 cm auf und sind alle höher als bei unserem Produkt (Abbildung 6.3). Im Gras passen die Höhen besser zusammen, da das Fahrzeug auf dem Boden fährt und das DSM die Oberfläche darstellt. Auf der Straße haben wir jedoch die größten Unterschiede, da die gleichen Höhen beobachtet wurden. Die Standardabweichung beträgt 2,4 cm, was gut ist, wenn man bedenkt, dass die Genauigkeit der kinematischen Straßenvermessung im Dezimeterbereich lag.

Integriertes Projekt 2019

WP10: Erstellen Digitaler Terrainmodelle

Supervisor

Kerekes, Gabriel

Teammitglied

Xiao Tan 3371707

Leyi Wu 3117893

Inhalt

1. Einführung	
2. Datenerfassung	
2.1 Methode und Prinzip	
2.2 Vermessungsplan und Durchführung	
2.3 Ergebnisse der Messungen und Probleme	
3. Datenverarbeitung	
3.1 Datentransformation	
3.2 Erstellen der DTM	
4. Zusammengfassung	

1. Einführung

DTM bedeutet digitales Terrainmodell, das das Gelände mit verschiedenen Methoden wie TIN, Konturen usw. darstellt. Ein DTM kann durch eine Gruppe von Rasterpunkten mit Höheninformationen erstellt werden. Unsere Aufgaben bestehen darin, nicht nur das digitale Ergebnis zu erstellen, sondern auch die notwendigen Informationen während der Feldarbeit zu erhalten.

2. Datenerfassung

2.1 Methode und Prinzip

Die Höheninformationen sollten während der Feldarbeit von dem Tachymeter und den Reflektoren gesammelt werden. Der Instrumentenstandpunkt könnte durch freie Stationierung bestimmt werden und dann jeder Reflektorpunkt wird im lokalen System oder im globalen System aufgrund des Prozesses der freien Stationierung gespeichert.

Die Region, die uns interessiert, sind die beiden Landebahnen. Zur Erstellung des DTM sollte die gesamte Region mit einer angemessenen Dichte abgedeckt werden. Grundsätzlich gilt, je dichter die Messungen sind, desto besser wird die DTM, und desto schwerer muss die Arbeit sein. Wenn wir beide Seiten betrachten, setzen wir den Abstand zwischen den Punkten auf 7 m, was bedeutet, dass wir das Prisma alle 7 m einstellen müssen, um die 3D-Koordinaten mit Tachymeter zu messen. Es gibt zwei Methoden, um dies zu erreichen. Eine besteht darin, alle Punkte im Voraus einzurichten und den Angaben des Controllers zu folgen. Die andere Methode ist, freie Punkte mit einer Entfernung, die grob durch Schritte und Richtungen geschätzt wird, mit Lotstock zu bestimmen.

Für die Methode der freien Stationierung benötigen wir mindestens 2 Punkte, um die Position des Tachymeters zu berechnen. In der Praxis sollten wir jedoch niemals nur zwei Punkte anwenden. Wir benötigen drei oder mehr, um die Position zu korrigieren. Obwohl das Tachymeter theoretisch überall aufgebaut werden kann, sollte es in der Mitte der Festpunkte gesetzt werden, um die beste Konfiguration zu erhalten.

In unserer Feldarbeit konnten Trimble S7 und SPS930 ausgewählt werden. Für den Reflektor wird das 360 ° Active-Prisma zusammen mit Trimble S7 und anderen passiven Zielen verwendet.

In der Praxis ist der automatische Verfolgungsmodus von Trimble S7 für die Rasterpunktmessung wesentlich praktischer. In diesem Modus verfolgt das Tachymeter das Ziel automatisch und der Bediener muss nur die Taste drücken, um die Messung durchzuführen und durch einen Druck auf dem Controller zu speichern. Es ist so bequem, dass die gesamte Operation allein ausgeführt werden kann.

2.2 Vermessungsplan und Durchführung

Figur 10. 1 Interessenregion

Die Interessengebiete unserer Feldarbeit sind die Landebahnen, die in der obigen Abbildung durch zwei rote Rechtecke markiert sind. Wie in 10.2.1 erwähnt, entscheiden wir uns, alle 7 Meter zu messen und zusätzlich den Straßenrand in der Umgebung zu messen.

Die Messschritte sind einfach und wiederholend. Zuerst müssen wir das Tachymeter aufbauen und die freie Stationierung durchführen. Nachdem wir das Tachymeter auf die Mitte der Festpunkte eingestellt und es horizontiert ist, müssen wir den Luftdruck und die Temperatur kalibrieren. Wir werden ein lokales Koordinatensystem erstellen, nachdem wir alle von uns gewählten Festpunkte gemessen haben.

Zweitens können wir Rasterpunktmessungen mit der in 10.2.1 genannten zweiten Methode starten. Wir setzen zwei Lotstöcke entlang der kurzen Kante der Interessenregion. Dann messen wir alle 7 Meter die Punkte zwischen ihnen. Was die Straßen betrifft, müssen wir im Prinzip die Ober- und Unterseite beider Kanten messen.

Wir können nicht die gesamte Region an einer Station messen, da die Messung umso schlechter

ist, je weiter das Ziel entfernt ist. Sobald wir eine neue Station benötigen, müssen alle Einrichtungsvorgänge erneut durchgeführt werden.

2.3 Ergebnisse der Messungen und Probleme

Nach zwei Tagen schließen wir die gesamte Messungen ab und transportieren alle Rohdaten vom Controller zum Laptop. Die Daten werden im TXT-Format unter dem Namen der Vermessungsgruppe gespeichert und verfügen über alle Kontrollinformationen zur weiteren Verarbeitung.

Leider gibt es bei unseren Messungen noch einige Probleme. Das erste ist, dass wir die zweite Methode (freie Punkte) für Absteckung verwenden müssen, da wir nicht gleichzeitig die Karte des Interessengebiets und das entsprechende Koordinatensystem haben, d.h. wenn wir uns für die Verwendung der lokalen Koordinate entscheiden, wir werden nicht wissen, wo sich die Kante tatsächlich befindet, und wenn wir die Kante im Netz markieren, können wir nur die UTM-Koordinaten haben. Immerhin haben wir während der Feldarbeit eine schlechte Netzwerkverbindung. Alle Gründe, die zur Freipunktmethode führen, sind die einzige Wahl, die für Ein-Mann-Fälle recht schwierig ist. Das zweite Problem ist die Dichte der Punkte, die möglicherweise zu groß ist. Es wird die anstrengendste Messungsaufgabe in der zweiten Woche.

3. Datenverarbeitung

3.1 Datentransformation

Die Rohdaten stammen alle aus dem lokalen Koordinatensystem der beiden von uns verwendeten Tachymeter. Das erste, was wir tun müssen, ist, es in UTM-Koordinaten umzuwandeln, um es an die spätere Verwendung anzupassen. Mit dem Ergebnis von WP2 erhält WP4 die Referenzen, um das lokale Netzwerk in globale Koordinaten umzuwandeln. Dies wird die Transformationsreferenz unseres lokalen Systems sein. Mit jag3D können wir es einfach ausführen, nachdem wir alle Daten im passenden Format neu angeordnet haben.

B_220	719 - rawdata.txt - Noter	pad					
File Edit	Format View Help)					
M8	11045.89895	35164.52984	702.2730203				
M9	10969.52981	35076.60509	700.4344317				
M12	10895.04792	35143.36100	701.5790311				
NP1	11048.22136	34976.23972	696.8388701				
S1	10987.878	35127.985	703.278 0.001	0.001	0.002	FS	21.07.19 11:00:36
B1	11052.397	35169.806	702.359			S1	21.07.19 11:06:45
B2	11047.948	35171.939	702.437			S1	21.07.19 11:07:31
B3	11044.053	35173.584	702.495			S1	21.07.19 11:08:22
B4	11040.362	35176.165	702.570			S1	21.07.19 11:08:51
B5	11036.320	35178.579	702.671			S1	21.07.19 11:09:11 ¦
B6	11032.250	35180.483	702.728			S1	21.07.19 11:09:28 ¦
B7	11028.161	35182.530	702.808			S1	21.07.19 11:09:51 ¦
B8	11023.983	35184.558	702.894			S1	21.07.19 11:10:09 ¦
B9	11019.710	35186.534	702.904			S1	21.07.19 11:10:38 ¦
B10	11017.329	35182.659	702.900			S1	21.07.19 11:11:49 ¦
B11	11021.100	35180.539	702.765			S1	21.07.19 11:12:37
B12	11025.032	35178.489	702.675			S1	21.07.19 11:12:56
B13	11028.989	35176.259	702.601			S1	21.07.19 11:13:13 ¦
B14	11033.143	35174.079	702.537			51	21.07.19 11:13:37 ¦
B15	11037.290	35171.891	702.447			S1	21.07.19 11:13:55 ¦
B16	11041.443	35169.509	702.369			S1	21.07.19 11:14:17
B17	11045.875	35167.227	702.302			S1	21.07.19 11:14:35 ¦
B18	11050.245	35164.917	702.210			S1	21.07.19 11:15:37 ¦
B19	11048.283	35161.021	702.138			S1	21.07.19 11:16:33
B20	11044.227	35163.391	702.223			S1	21.07.19 11:17:05
B21	11040.145	35165.497	702.288			S1	21.07.19 11:17:24
B22	11035.956	35167.758	702.386			51	21.07.19 11:17:42 ¦
B23	11031.923	35169.933	702.446			S1	21.07.19 11:18:01 ¦
B24	11028.116	35172.070	702.543			S1	21.07.19 11:18:21
B25	11024.180	35174.254	702.609			S1	21.07.19 11:18:37 ¦
B26	11019.898	35176.545	702.658			S1	21.07.19 11:18:54
B27	11015.323	35178.710	702.715			S1	21.07.19 11:19:40
000	44044 004	35400 500	702 700			CA 1	24 07 40 44 20 00 L

Figur 10. 2 Rohdaten

B_220719_UTM.txt - Notepad

File	Edit Format	<u>View</u> <u>H</u> elp			
	M8	+32529696.216569	+5375191.971087	+725.615110	+0.000003
	M9	+32529587.254901	+5375233.085098	+723.776521	+0.000003
Ê.	M12	+32529624.017679	+5375326.103384	+724.921120	+0.000003
	NP1	+32529520.431742	+5375124.456221	+720.180960	+0.000004
	S1	+32529641.809148	+5375233.705826	+726.620089	+0.000003
	B1	+32529703.419721	+5375187.707624	+725.701090	+0.000003
	B2	+32529703.876382	+5375192.620337	+725.779090	+0.000003
	B 3	+32529704.067603	+5375196.844137	+725.837090	+0.000003
	B4	+32529705.207453	+5375201.201404	+725.912090	+0.000003
	B5	+32529706.068884	+5375205.829913	+726.013090	+0.000003
	B6	+32529706.442286	+5375210.307713	+726.070089	+0.000003
	B7	+32529706.943211	+5375214.852952	+726.150089	+0.000003
	B8	+32529707.395433	+5375219.475069	+726.236089	+0.000003
	B9	+32529707.765922	+5375224.168239	+726.246089	+0.000003
	B10	+32529703.305487	+5375225.056669	+726.242089	+0.000003
	B11	+32529702.625752	+5375220.784339	+726.107089	+0.000003
	B12	+32529702.067534	+5375216.385303	+726.017089	+0.000003
	B13	+32529701.349176	+5375211.900360	+725.943089	+0.000003
	B14	+32529700.746071	+5375207.248008	+725.879089	+0.000003
	B15	+32529700.133033	+5375202.599445	+725.789090	+0.000003
	B16	+32529699.340132	+5375197.877937	+725.711090	+0.000003
	B17	+32529698.737830	+5375192.929465	+725.644090	+0.000003
	B18	+32529698.087754	+5375188.029424	+725.552090	+0.000003
	B19	+32529693.753017	+5375188.517601	+725.480090	+0.000003
	B20	+32529694.568323	+5375193.143972	+725.565090	+0.000003
	B21	+32529695.127011	+5375197.703120	+725.630090	+0.000003
	B22	+32529695.793939	+5375202.416404	+725.728090	+0.000003
	B23	+32529696.434342	+5375206.953540	+725.788089	+0.000003
	B24	+32529697.117529	+5375211.265532	+725.885089	+0.000003
	B25	+32529697.800032	+5375215.714817	+725.951089	+0.000003
	B26	+32529698.462825	+5375220.525733	+726.000089	+0.000003
	B27	+32529698.905775	+5375225.567721	+726.057089	+0.000003
	B28	+32529699.178041	+5375230.255471	+726.110089	+0.000003
	B29	+32529699.474560	+5375234.975652	+726.114089	+0.000003
1	B30	+32529694.735772	+5375235.299407	+726.079089	+0.000003
1	0.74	30500603 340404	5375030 007444	700 00000	0 00000

Figur 10. 3 Transformierte Daten

3.2 Erstellen der DTM

DTM-Erstellung ist nichts anderes als Interpolation zwischen den Punkten und Erstellen einer glatten Oberfläche für die weitere Interpretation.

Es gibt viele Anwenderprogramme, die DTM automatisch erstellen können. Hier wählen wir ArcMap 10.5. Erstens müssen wir alle Punkte importieren, um eine .shp-Datei zu erstellen. Die Punkteskizze zeigt unten.

Figur 10. 4 Skizze von .shp Datei

Dann können wir mit der Funktion "TIN erstellen" den entsprechenden DTM generieren. Das Ergebnis sehen Sie unten.

Figur 10. 5 TIN

Figur 10. 6 DTM

Wie aus allen Bildern hervorgeht, weisen die Landebahnen in Ost-West-Richtung ein deutliches Gefälle auf.

Figur 10. 8 Gesamtbild

Dies ist das einfachste Gesamtbild der DTM und des realen Satellitenbilds von Google Map. Dies ist eine grundlegende, aber typische Verwendung von DTM.

4. Zusammenfassung

Diese Feldarbeit lehrt uns viel über Vermessung, Theorie und viele andere Aspekte. Wir haben viel darüber gelernt, was wir tun sollten, wenn wir Ingenieur werden und ein Projekt leiten. Der Supervisor hilft uns sehr und lehrte uns, wie und warum eine Vermessung durchgeführt werden sollte. Wir haben auch viel von unseren Teamkollegen gelernt und danken die Mitglieder, die uns dabei geholfen haben, Daten zu erhalten.

Wir verwenden Matlab, um die Koordinaten für die Absteckung zu erstellen. Es sind zwar Probleme aufgetreten, aber wir haben es geschafft, es zu lösen und das gute Ende zu erreichen. Wir üben immer noch viel, indem wir die Vermessungen durchführen, die von anderen Arbeitspaketen gefordert wurde. Wir haben eine wundervolle Zeit mit allen verbracht.

Alles in allem ist das ein sehr sinnvolle Praktikum. Wir danken allem, was uns geholfen haben.